INSA Rouen Normandie * Normandie Université * Henri-Becquerel Center, Rouen LITIS laboratory * Learning Team

S. Belharbi, C. Chatelain, R.Hérault, S. Adam, S. Thureau, M. Chastan, R. Modzelewski.

Spotting L3 slice in CT scans using deep convolutional network and transfer learning

* Medical application *

Soufiane Belharbi

soufiane.belharbi@insa-rouen.fr

sbelharbi.github.io

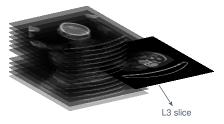
INSA Rouen Normandie

July 8, 2018

Context: Collaboration with Henri-Becquerel center at Rouen (cancer).

Main goal: Estimate the sarcopenia¹ level from a computerized tomography (CT) scan based only on the third lumbar vertebra (L3).

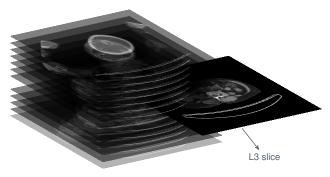
- M is variable.
- In a CT scan, a specific slice is selected to represent the L3.
- \Rightarrow Need to locate the slice representing the third lumbar vertebra.



Find the L3 slice within a whole CT scan.

1. Sarcopenia: loss of skeletal muscle mass.

Problem setup: L3 slice localization in CT scans



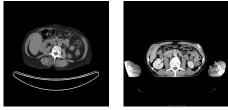
Finding the L3 slice within a whole CT scan.

Image: Second secon

a dataset composed of 642 CT scans provided by Henri-Becquerel center.

Available annotation:

the position of the 3rd lumber vertebra. (i.e., the number of the correct slice in the CT scan)



L3 slices from two different patients: [Left] Patient A. [Right] Patient B. Visual similarity of the vertebrae slices of the same patient.

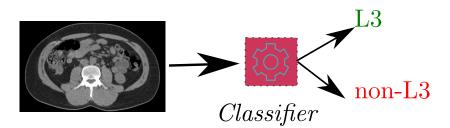
Two slices from the same patient: [Left] an L3 slice. [Right] a non L3 slice. The need to use the context to localize the L3 slice.

Machine Learning!

Classification (discrete value) [X]

Classify each slice for: "L3" or "Not L3":

☞ Simple. ☺∧ No context. ☺



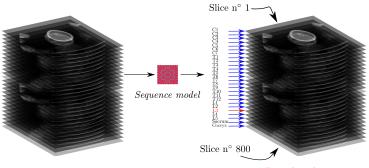
Classification (discrete value) [X] Classify each slice for: "L3" or "Not L3": 🕼 Simple. 🙂 ∧ No context. ☺ non-L3 Classifiernonnon

Typical prediction (no context)

Sequence labeling [X]

Label all the slices (vertebrae): L1, L2, L3, ...:

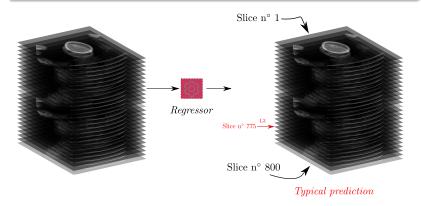
- 🕼 Global analysis: context. 🙂
- Existing work with promising results.
- ▲ Requires labeling more than one slice. 😟



Regression (real value) [-]

Predict the height (position) of the L3 slice inside the CT scan:

- 🕼 Global analysis: context. 🙂
- Requires labeling only the L3 slice position.



 $\left[\checkmark \right]$

Issues

Which model for regression?

State of the art in computer vision: Deep learning, convolutional neural network (CNN).

- ▲ Requires fixed input size (when using dense layers).
- ▲ Needs a large number of training samples.

Issues ▲ High dimension input: 1 scan = N × 512 × 512, with 400 < N < 1200.</td> Problem 1: large input space ▲ Implies: Variability of the height of each scan (depends on N). Problem 2: Different input size ▲ Dataset with annotated L3 position: 642 patients . (L3CT1 dataset) Problem 3: few training data

Issues

Which model for regression?

State of the art in computer vision: Deep learning, convolutional neural network (CNN).

- ▲ Requires fixed input size (when using dense layers).
- ▲ Needs a large number of training samples.

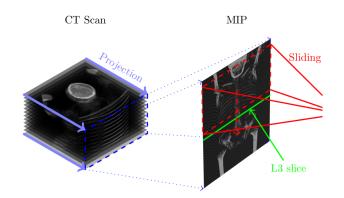
Issues				
A High dimension input: $1 \operatorname{scan} = N \times 512 \times 512$, with $400 < N < 1200$.				
Problem 1: large input space				
▲ Implies: Variability of the height of each scan (depends on <i>N</i>).				
▲ Dataset with annotated L3 position: 642 patients . (L3CT1 dataset) Problem 3: few training data				

Issue 1: High dimension input > Solution: Frontal MIP

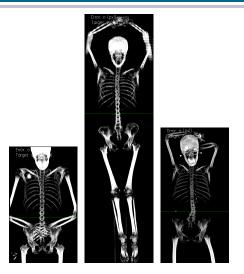
Problem 1: High dimension input

I31M inputs for one example (large input dimension):
 Frontal or lateral Maximum Intensity Projection (MIP).

- $\ \, \hbox{$\ifmmodel{scalar}\)} 512\times 512\times N \Longrightarrow 512\times N.$
- Preserves pertinent information (skeletal structure).



Issue 2: Different input size > Solution: Sliding window



Examples of normalized frontal MIP images with the L3 slice position.

Issue 2: Different input size > Solution: Sliding window

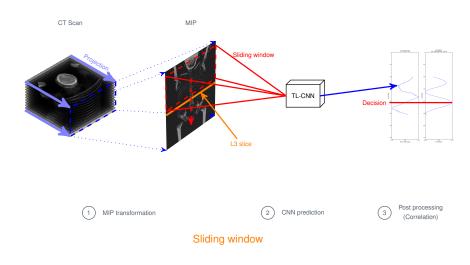
Problem 2: Different input size

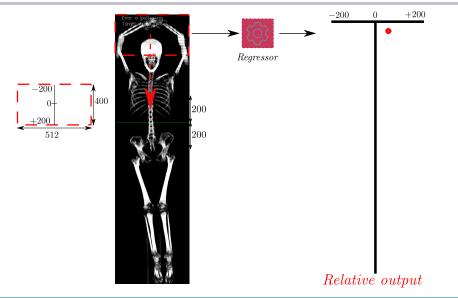
Classical problem in computer vision

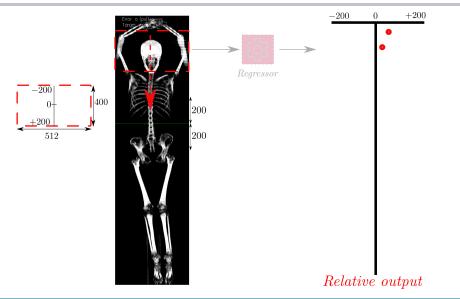
Sliding window technique

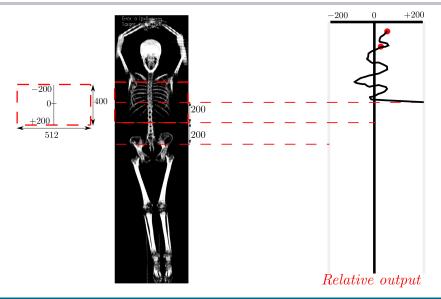
Post-processing

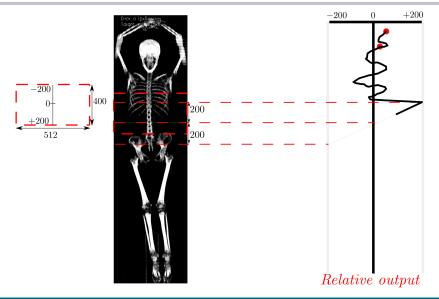
Examples of normalized frontal MIP images with the L3 slice position.

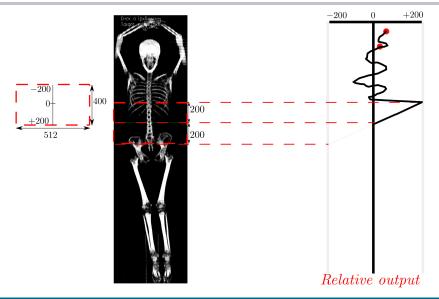


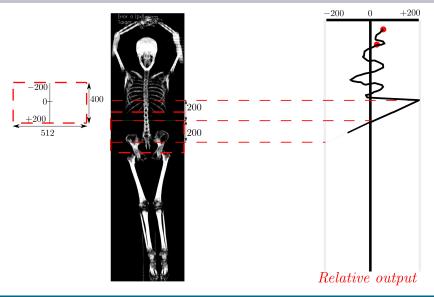


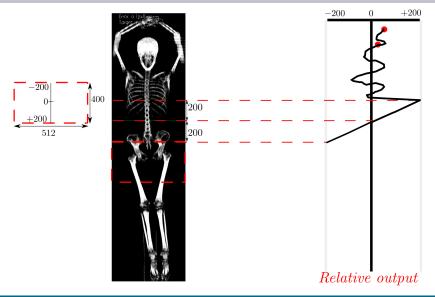


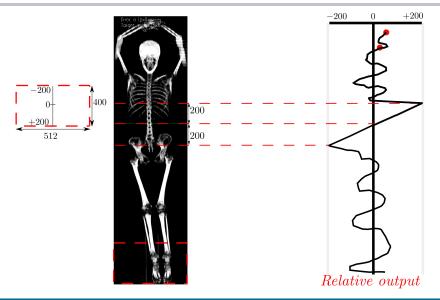


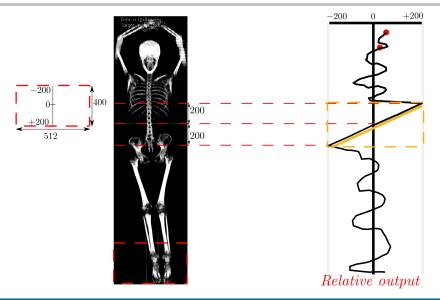


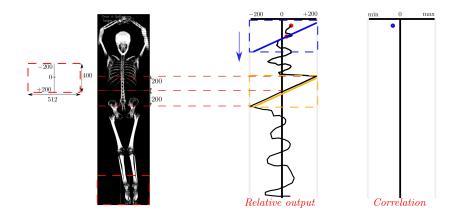


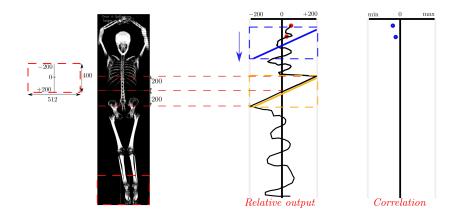


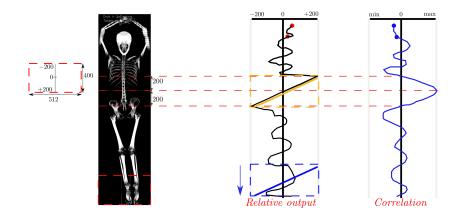


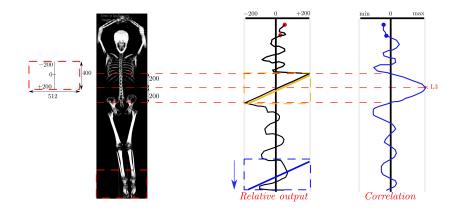












Issue 3: Lack of data > Solution: Transfer learning

Problem 2: Few data (642 patients)

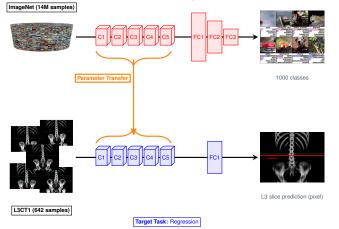
Use pre-trained CNNs over large datasets

- 🕼 Alexnet, GoogleNet, VGG16, VGG19, ... for classification
- Pre-trained models over ImageNet: 14 millions of natural images [Fel-Fei and Russakovsky 2013].

Source task with abundant data.

Issue 3: Lack of data > Solution: Transfer learning

Source Task: Classification



System training using transfer learning.

Experiments: Quantitative results

Cross-validation:

			Pre-trained			
	RF500	CNN4	Alexnet	VGG16	VGG19	Googlenet
Average						
cross-validation	10.50 ± 10.80	2.78 ± 2.48	2.45 ± 2.42	1.82 ± 2.32	1.83 ± 1.83	2.54 ± 4.22
error (5 folds) (slice)						
Number of parameters	-	55 K	2 M	14 M	20 M	61 M
Average						
processing time	-	04.46	06.37	13.28	16.02	17.75 ¹
(second/CT scan) (K40)						

RF500 (random forest with 500 decision trees), CNN4 (Homemade model), and Alexnet/VGG16/VGG19/GoogleNet (Pre-trained models).

Possible speedup: reduce the number of sampled windows \Rightarrow Increase stride.

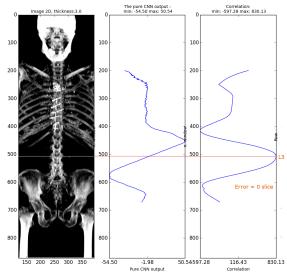
Example VGG16:

Stride=1: ~ 13 seconds/CT scan with a an error of 1.82 ± 2.32 .

Stride=4: ~ 02 seconds/CT scan with a an error of 1.91 ± 2.69 .

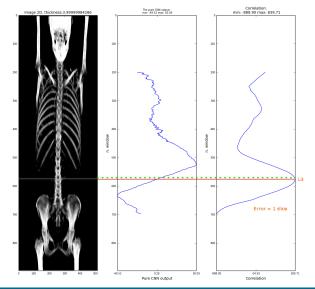
^{1.} Due to implementation.

Experiments: Qualitative results

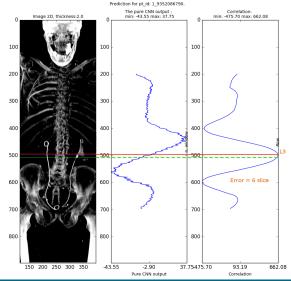


Prediction for pt_id: 165_5112614581.

Experiments: Qualitative results



Experiments: Qualitative results



Experiments: CNN vs. Radiologists

Setup: Intra-annotator variability

New evaluation set: 43 CT scans annotated by the same reference radiologist (who annotated the L3CT1 dataset).

Ask 3 other radiologists to localize the L3 slice.

Perform this experiment twice: t_1, t_2 .

Errors (slices) / operator	Ragiologist #1	Radiologist #2	Radiologist #3
<i>t</i> ₁	0.81 ± 0.97	0.72 ± 1.51	0.51 ± 0.62
t ₂	0.77 ± 0.68	0.95 ± 1.61	0.86 ± 1.30

Intra-annotator variability.

Experiments: CNN vs. Radiologists

Setup: Intra-annotator variability

New evaluation set: 43 CT scans annotated by the same reference radiologist (who annotated the L3CT1 dataset).

Ask 3 other radiologists to localize the L3 slice.

Perform this experiment twice: t_1, t_2 .

Errors (slices) / operator	Ragiologist #1	Radiologist #2	Radiologist #3	CNN4	VGG16
t ₁	0.81 ± 0.97	0.72 ± 1.51	0.51 ± 0.62	2.37 ± 2.30	1.70 ± 1.65
t ₂	0.77 ± 0.68	0.95 ± 1.61	0.86 ± 1.30	2.53 ± 2.27	1.58 ± 1.83

Performance radiologists vs. automatic systems.

Conclusion

- Mapted pipeline for L3 localization: pre-processing, CNN, post-processing.
- Constrained average error: 1.82 slice (< 5mm) (maximum error: 9 slices). For Average thickness of a vertebra $\approx 2.5cm \Rightarrow$ Still within the L3 vertebra.
- Learn context: sliding window (double checked using correlation: context over multiple windows.)
- F Generic framework: can be easily adapted for detecting other subjects given the required annotation.
- Ise of transfer learning alleviates the lack of training data.

Perspectives: A Running time of VGG16 over CPUs is time consuming.

Possible solution: Prune unnecessary convolution filters.

Valorization:

- Integrate this work with the software of the projet "BodyComp.Al" (diffused to European centers for cancer treatment).
- BodyComp.Al" has won one of the 2017 French Innovative Unicancer Prize.

Publications:

S. Belharbia, C. Chatelain, R. Hérault, S. Adam, S. Thureau, M. Chastan, and R. Modzelewski. Spotting L3 slice in CT scans using deep convolutional network and transfer learning, Computers in Biology and Medicine, vol. 87, pp. 95-103, 2017.

Thank you for your attention!

Questions?

soufiane.belharbi@insa-rouen.fr sbelharbi.github.io

Computation resource

UFR Sciences et Techniques's data center INSA Rouen Normandie

Disclamer: I do not own some of the photos in this presentation. Usage is for discussion purpose only. No ownership assumed or implied.

