# Deep Weakly-Supervised Learning Methods for Classification and Localization in Histology Images: A Survey

(#M004)

Jérôme Rony<sup>1</sup> & Soufiane Belharbi<sup>1\*</sup> & Jose Dolz<sup>2</sup> & Ismail Ben Ayed<sup>1</sup> & Luke McCaffrey<sup>3</sup> & Eric Granger<sup>1</sup>



<sup>1</sup>LIVIA, Dept. of Systems Engineering, ETS Montreal, Canada <sup>2</sup>LIVIA, Dept. of Software and IT Engineering, ETS, Montreal, Canada <sup>3</sup>Rosalind and Morris Goodman Cancer Research Centre, Department of Oncology, McGill University

#### Context

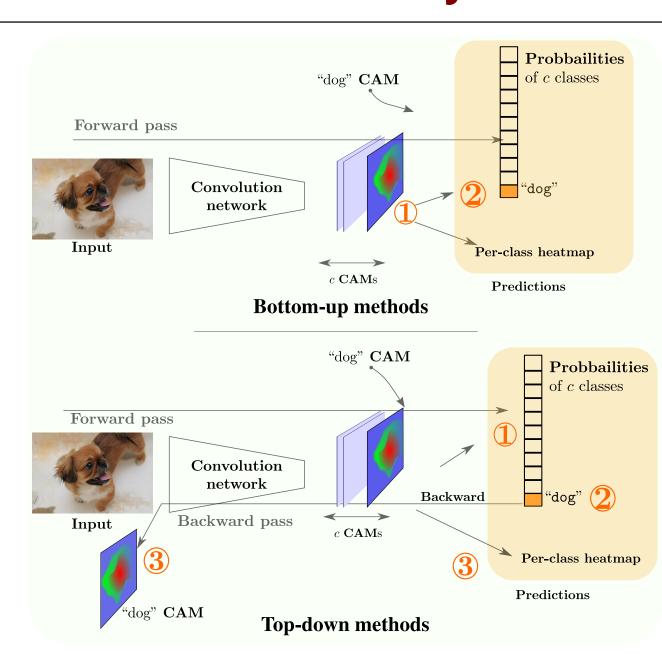
We explore weakly-supervised object localization methods in histology images and to what extent they are able to localize regions of interest (ROIs), i.e., cancerous regions, using only image label supervision.

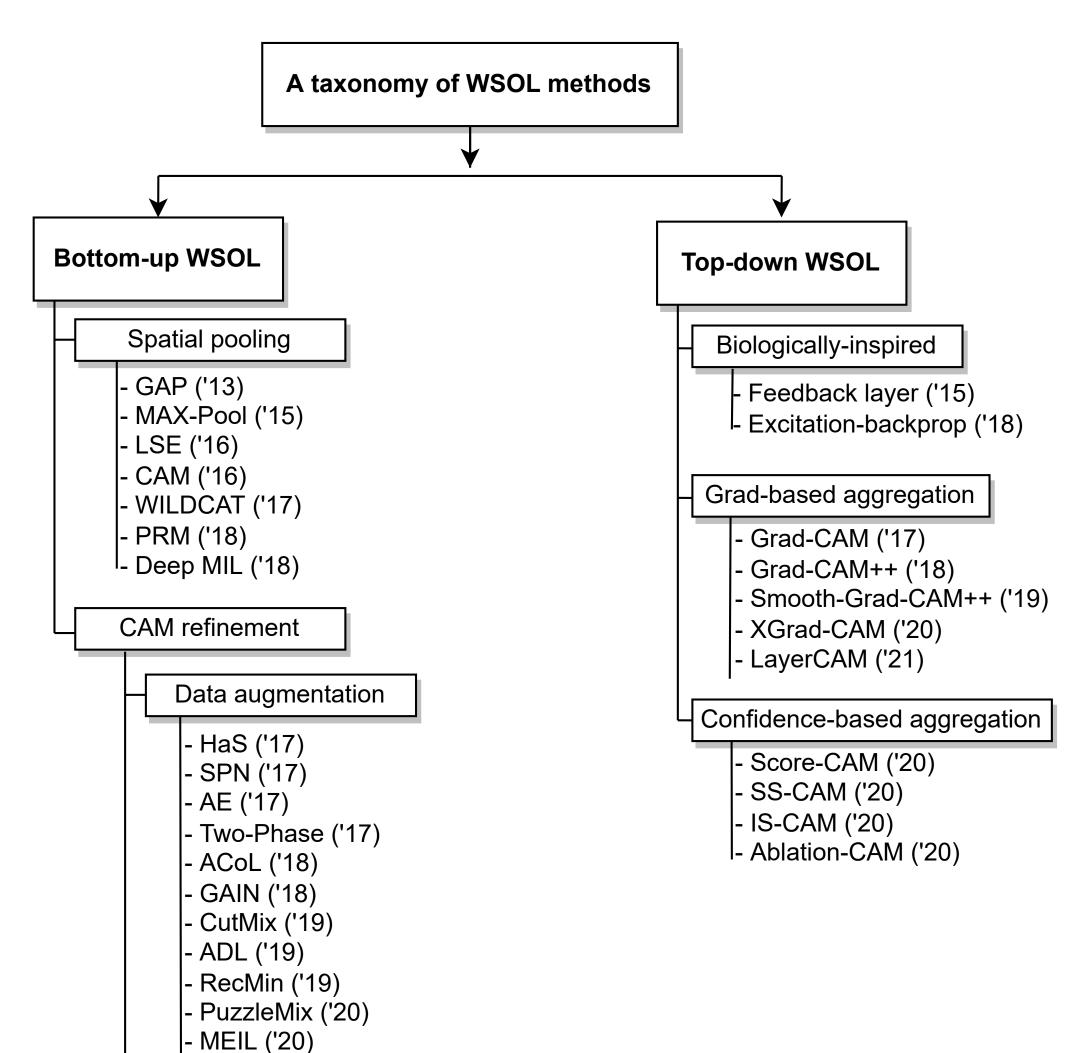
Weak supervision: only global image class is available.

## Challenges:

- Large images
- Label ambiguity
- Large stain variability
- Unstructured images
- Similar foreground/background (no salient patterns)

#### **Taxonomy**





### **Empirical Results**

Datasets: GlaS for colon cancer, and CAMELYON16 for breast cancer.

#### Localization performance of different WSOL Methods

|                              | GlaS         |           |        |      | CAMELYON16 |          |        |      |
|------------------------------|--------------|-----------|--------|------|------------|----------|--------|------|
|                              | VGG          | Inception | ResNet | Mean | VGG I      | nception | ResNet | Mear |
| Methods / Metric             | PxAP (B-LOC) |           |        |      |            |          |        |      |
| Bottom-up WSOL               |              |           |        |      |            |          |        |      |
| GAP (corr,2013)              | 58.5         | 57.5      | 56.2   | 57.4 | 37.5       | 24.6     | 43.7   | 35.2 |
| MAX-Pool (cvpr,2015)         | 58.5         | 57.1      | 46.2   | 53.9 | 42.1       | 40.9     | 20.2   | 34.4 |
| LSE (cvpr,2016)              | 63.9         | 62.8      | 59.1   | 61.9 | 63.1       | 29.0     | 42.1   | 44.7 |
| CAM (cvpr,2016)              | 68.5         | 50.5      | 64.4   | 61.1 | 25.4       | 48.7     | 27.5   | 33.8 |
| HaS (iccv,2017)              | 65.5         | 65.4      | 63.5   | 64.8 | 25.4       | 47.1     | 29.7   | 34.0 |
| WILDCAT (cvpr,2017)          | 56.1         | 54.9      | 60.1   | 57.0 | 44.4       | 31.4     | 31.0   | 35.6 |
| ACoL (cvpr,2018)             | 63.7         | 58.2      | 54.2   | 58.7 | 31.3       | 39.3     | 31.3   | 33.9 |
| SPG (eccv,2018)              | 63.6         | 58.3      | 51.4   | 57.7 | 45.4       | 24.5     | 22.6   | 30.8 |
| Deep MIL (icml,2018)         | 66.6         | 61.8      | 64.7   | 64.3 | 53.8       | 51.1     | 57.9   | 54.2 |
| PRM (cvpr,2018)              | 59.8         | 53.1      | 62.3   | 58.4 | 46.0       | 41.7     | 23.2   | 36.9 |
| ADL (cvpr,2019)              | 65.0         | 60.6      | 54.1   | 59.9 | 19.0       | 46.0     | 46.0   | 37.0 |
| CutMix (eccv,2019)           | 59.9         | 50.4      | 56.7   | 55.6 | 56.4       | 44.9     | 20.7   | 40.6 |
| TS-CAM (corr,2021)           | t:54.5       | b:57.8    | s:55.1 | 52.8 | t:46.3     | b:21.6   | s:42.2 | 36.7 |
| MAXMIN (tmi,2022)            | 75.0         | 49.1      | 81.2   | 68.4 | 50.4       | 80.8     | 77.7   | 69.6 |
| NEGEV (midl,2022)            | 81.3         | 70.1      | 82.0   | 77.8 | 70.3       | 53.8     | 52.6   | 58.9 |
| Top-down WSOL                |              |           |        |      |            |          |        |      |
| GradCAM (iccv,2017)          | 75.7         | 56.9      | 70.0   | 67.5 | 40.2       | 34.4     | 29.1   | 34.5 |
| GradCAM++ (wacv,2018)        | 76.1         | 65.7      | 70.7   | 70.8 | 41.3       | 43.9     | 25.8   | 37.0 |
| Smooth-GradCAM++ (corr,2019) | 71.3         | 67.6      | 75.5   | 71.4 | 35.1       | 31.6     | 25.1   | 30.6 |
| XGradCAM (bmvc,2020)         | 73.7         | 66.4      | 62.6   | 67.5 | 40.2       | 33.0     | 24.4   | 32.5 |
| LayerCAM (ieee,2021)         | 67.8         | 66.1      | 70.9   | 68.2 | 34.1       | 25.0     | 29.1   | 29.4 |
| Fully supervised             |              |           |        |      |            |          |        |      |
| U-Net(miccai,2015)           | 96.8         | 95.4      | 96.4   | 96.2 | 83.0       | 82.2     | 83.6   | 82.9 |

#### Results

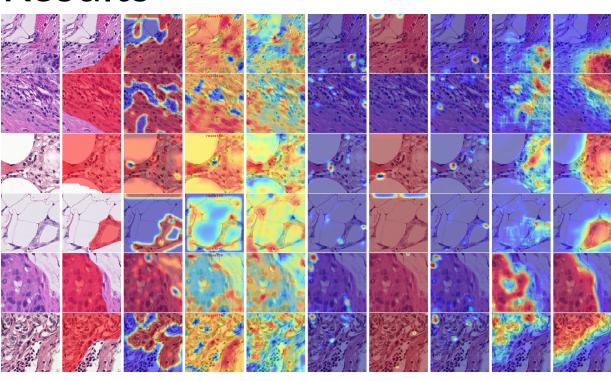


Figure 1. Predictions over **metastatic** test samples for **CAMELYON16**.

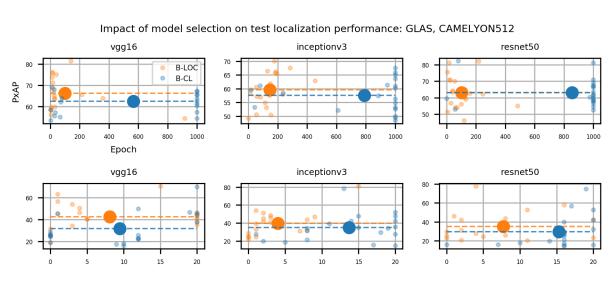


Figure 2. Localization: Impact of model selection (B-LOC: orange. vs. B-CL: blue) over test localization (PxAP) performance. Each point indicates the epoch (x-axis) at which the best model is selected and its corresponding localization performance (y-axis). Large circles indicate the average over all WSOL methods. Top: GlaS. Bottom: CAMELYON16.

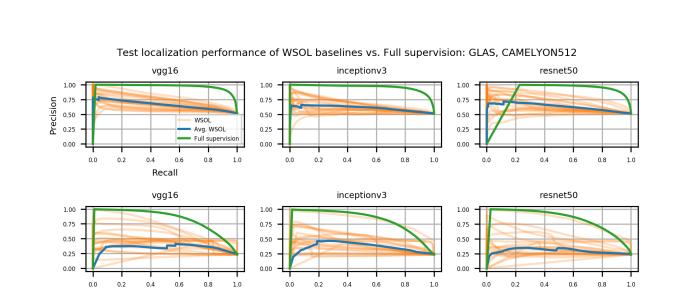


Figure 3. Localization sensitivity to thresholding: WSOL methods (orange), average WSOL methods (blue), fully supervised method (green). Top: GlaS. Bottom: CAMELYON16.

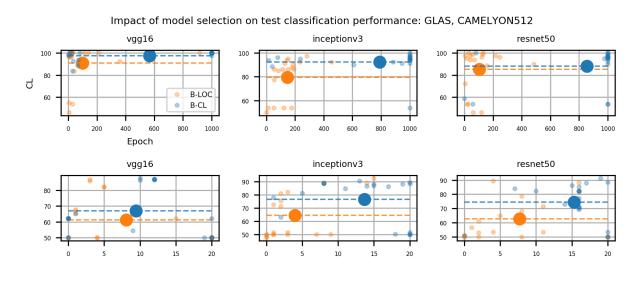


Figure 4. Classification: Impact of model selection (B-LOC: orange. vs. B-CL: blue) over test classification (CL) performance. Each point indicates the epoch (x-axis) at which the best model is selected and its corresponding classification performance (y-axis). Large circles indicate the average over all WSOL methods. Top: GlaS. Bottom: CAMELYON16.

#### **Ongoing Challenges for WSOL in Histology Data**

- Under activation (high false negative), Over activation (high false positive)
- Sensitivity to thresholding
- Model selection

# Directions:

- Unsupervised size constraints
- Pseudo-labels
- Validation free





- GC-Net ('20)

- ScoreMix ('22)

|- MAXMIN ('22)

⊢Features enhancement

- FickleNet ('19)

- NL-CCAM ('20)

- MDC ('18)

- DANet ('19)

- I2C ('20)

· ICL ('20)

- CSTN ('20)

- TS-CAM ('21)

SPG ('18)

- PSOL ('20)

- SPOL ('21)

- F-CAM ('22)

<sup>I</sup>- NEGEV ('22)

- Pair-Sim ('20)

Pseudo-annotation

- SaliencyMix ('21)