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1 Context and Motivation: Structured Output Problems (SOP)

Standard Machine Learning
Mθ : X → y

I Inputs X ∈ Rd

I Output y ∈ R : classification, regression, . . .

Machine Learning for
Structured Output Problems

Mθ : X → Y
I Inputs X ∈ Rd

I Outputs Y ∈ Rd ′
,d ′ > 1 with structured

dependencies

Motivation
I A priori knowledge about the structure of the outputs

helps the prediction
I How to learn the structure of the outputs during the

training of Mθ?

2 Our Approach: Deep Neural Networks for SOP (New Formulation)
New Formulation for SOP

L(θ,D(x,y)) =
1
n

n∑
i=1

[
C(M(xi;θsup,θin,θout), yi)︸ ︷︷ ︸

Learn (inputs → outputs) dependencies

+ `in(Rin(xi;θin), xi)︸ ︷︷ ︸
Learn inputs dependencies

+ `out(Rout(yi;θout), yi)︸ ︷︷ ︸
Learn outputs dependencies

]
(1)

Our Approach
I Based on Deep Neural Network (IODA)[1]
I Use the layer-wise pre-training trick to:

I Learn inputs dependencies
I Learn outputs dependencies

I Pre-trainer: Auto-encoder

C(.), `in(.), `out(.): defined costs.

Rin(.)/Rout(.): Input/Output reconstruction. M(.): supervised task.

3 Training
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4 Application: Facial Landmark Detection (Regression Approach)

Facial Landmark Detection Problem

NRMSE:

Normalized Root Mean Square Error between the

predicted shape and ground truth shape.

CDF0.1:

Cumulative Distribution Function (percentage of

test images that have an NRMSE less or equal

than 0.1).

AUC:

Area Under the CDFx Curve.

LFPW HELEN
AUC CDF0.1 AUC CDF0.1

Mean shape 66.15% 18.30% 63.30% 16.97%
NDA 0-0-0 77.60% 50.89% 80.91% 69.69%
IDA 1-0-0 79.25% 62.94% 82.13% 76.36%

2-0-0 79.10% 58.48% 82.39% 75.75%
3-0-0 79.51% 65.62% 82.25% 77.27%

IODA 1-0-1 80.66% 68.30% 83.95% 83.03%
1-1-1 81.50% 72.32% 83.51% 80.90%
1-0-2 81.00% 71.42% 83.91% 82.42%
1-1-2 81.06% 70.98% 83.81% 83.03%
1-0-3 81.91% 74.55% 83.72% 80.30%
2-0-1 81.32% 72.76% 83.61% 80.00%
2-1-1 81.47% 70.08% 84.11% 83.33%
2-0-2 81.35% 71.87% 83.88% 82.12%
3-0-1 81.62% 72.76% 83.38% 78.48%

Table : Performance of: mean shape, NDA, IDA
and IODA on LFPW and HELEN datasets.

NDA: Non pre-trained Deep Architecture
IDA: Input pre-trained Deep Architecture
IODA: Input/Output pre-trained Deep Architecture Figure : CDFx curves of best configurations

5 Perspectives
I Minimize Eq.1 at the same time using weighted

sub-losses
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Neural Network Model Rin(xi ;θin) = x̂i
Input pre-training
Keep the coders

Rout(yi ;θout) = ŷi
Output pre-training
Keep the decoders

1. Unsupervised Pre-training

Back-propagation

2. Finetune

M(xi ;θsup,θin,θout) = ŷi

LFPW

HELEN


