

Soufiane Belharbi, Clément Chatelain, Romain Hérault, Sébastien Adam

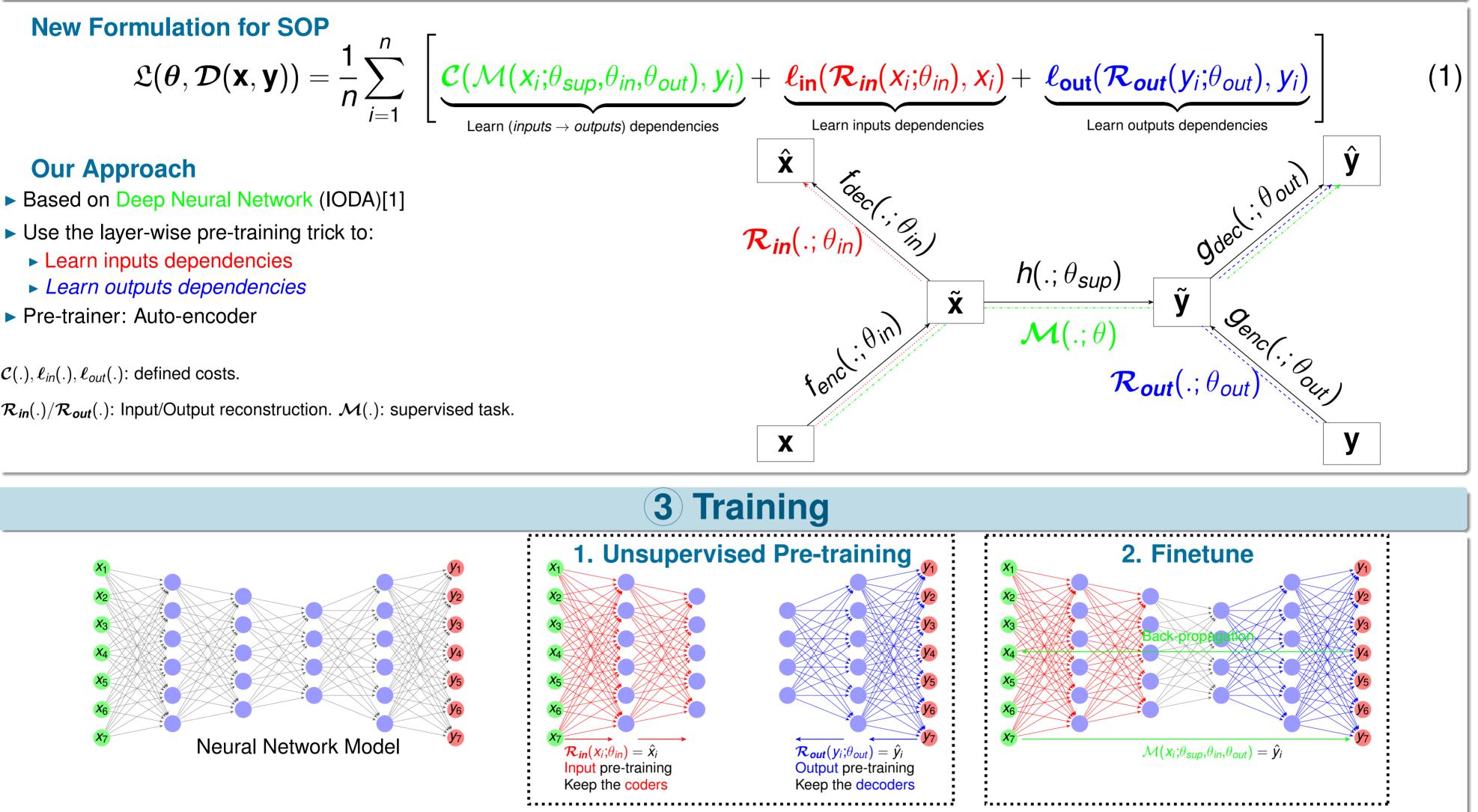
(1) Context and Motivation: Structured Output Problems (SOP)

Standard Machine Learning $\mathcal{M}_{\theta}: \mathcal{X} \rightarrow \mathbf{y}$

▶ Inputs $\mathcal{X} \in \mathbb{R}^d$

▶ Output $y \in \mathbb{R}$: classification, regression, ...

Machine Learning for **Structured Output Problems** $\mathcal{M}_{ heta}: \mathcal{X} \to \mathcal{Y}$


▶ Inputs $\mathcal{X} \in \mathbb{R}^d$

• Outputs $\mathcal{Y} \in \mathbb{R}^{d'}, d' > 1$ with *structured* dependencies

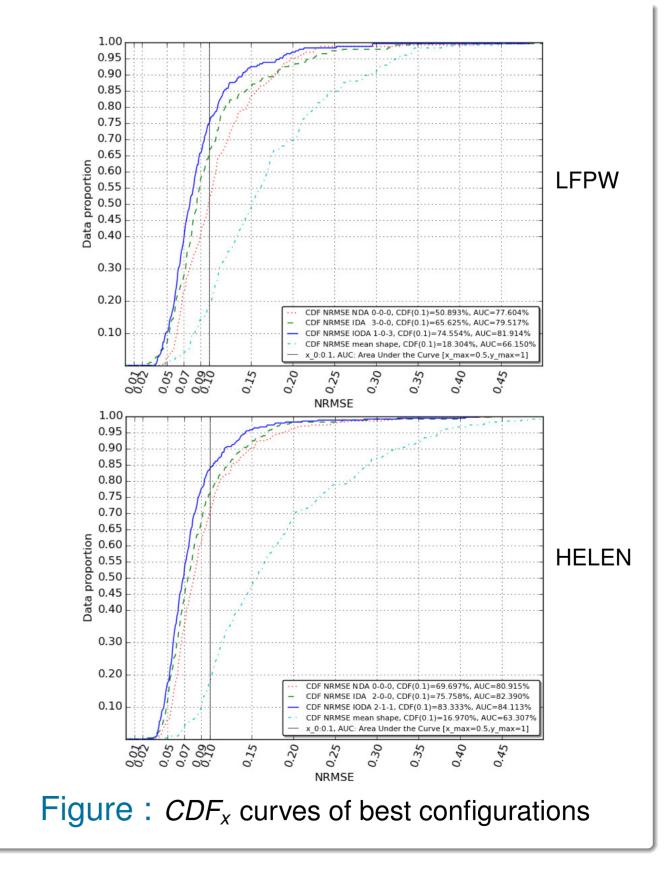
Motivation

- A priori knowledge about the structure of the outputs helps the prediction
- How to *learn* the structure of the outputs during the training of \mathcal{M}_{θ} ?

(2) Our Approach: Deep Neural Networks for SOP (New Formulation)

- $\mathcal{C}(.), \ell_{in}(.), \ell_{out}(.)$: defined costs.
- $\mathcal{R}_{in}(.)/\mathcal{R}_{out}(.)$: Input/Output reconstruction. $\mathcal{M}(.)$: supervised task.

4 Application: Facial Landmark Detection (Regression Approach)


Facial Landmark Detection Problem

NRMSE:

Normalized Root Mean Square Error between the

	LFPW		HELEN	
	AUC	CDF _{0.1}	AUC	CDF _{0.1}
Mean shape	66.15%	18.30%	63.30%	16.97%
NDA 0-0-0	77.60%	50.89%	80.91%	69.69%
IDA 1-0-0	79.25%	62.94%	82.13%	76.36%
2-0-0	79.10%	58.48%	82.39%	75.75%
3-0-0	79.51%	65.62%	82.25%	77.27%
IODA 1-0-1	80.66%	68.30%	83.95%	83.03%
1-1-1	81.50%	72.32%	83.51%	80.90%
1-0-2	81.00%	71.42%	83.91%	82.42%

predicted shape and ground truth shape.

CDF_{0.1}:

Cumulative Distribution Function (percentage of test images that have an NRMSE less or equal than 0.1).

AUC:

Area Under the CDF_x Curve.

1-1-2 81.06% 70.98% 83.81% 83.03% **1-0-3 81.91% 74.55%** 83.72% 80.30% **2-0-1** 81.32% 72.76% 83.61% 80.00% **2-1-1** 81.47% 70.08% **84.11% 83.33% 2-0-2** 81.35% 71.87% 83.88% 82.12% **3-0-1** 81.62% 72.76% 83.38% 78.48%

Table : Performance of: mean shape, NDA, IDA and **IODA** on LFPW and HELEN datasets.

NDA: Non pre-trained Deep Architecture **IDA**: Input pre-trained **D**eep **A**rchitecture **IODA:** Input/Output pre-trained Deep Architecture

5 Perspectives

Minimize Eq.1 at the same time using weighted sub-losses

6) **References**

[1]: J. Lerouge, R. Herault, C. Chatelain, F. Jardin, and R. Modzelewski. IODA: An Input Output Deep Architecture For Image Labeling. Pattern Recognition, 48(9):2847-2858, 2015.

soufiane.belharbi@insa-rouen.fr, projet ANR JCJC Lemon, www.litislab.eu Conférence d'APprentissage automatique (CAP), 2015, Lille