
Learning Structured Output Dependencies
Using Deep Neural Networks

Soufiane Belharbi1 SURNAME.LASTNAME@LITISLAB.EU
Clément Chatelain1

Romain Hérault1
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Abstract

1. Problem Statement
Many recent machine learning applications address chal-
lenging problems where the data outputs are in high dimen-
sion and structural dependencies lie between these outputs.
These inter-dependencies constitute a structure such as se-
quences, strings, trees, graphs which should be either dis-
covered if unknown, or integrated in the learning process.
Applications can be found in statistical natural language
processing, bio-informatics, speech processing, etc. Many
approaches have been proposed to deal with this category
of problems such as Kernel based methods (kernel depen-
dency estimation (Weston et al., 2002) and Discriminative
methods (structured support vector machine (Blaschko &
Lampert, 2008))), but they suffer from the pre-image prob-
lem. Graphical models (Hidden Markov Models (HMM),
Conditional Random Fields (CRF)) are also made for mod-
eling structured data, but they only provide a single trans-
formation layer between the input and the output variables.

Our proposed method is a generic formulation for regres-
sion/classification with structured output data based on
Deep Neural Networks (DNN) where we incorporate the
inputs dependencies learning, the outputs dependencies
learning and the supervised task in the same framework.

2. Proposed Objective
We extend the objective function of (Weston et al., 2008)
for embedding input dependencies to output dependencies.
Following this framework, the total cost L of learning the
parameters θ = {θ, θin, θout} of a model over a labeled
dataset D = {(x1, y1), . . . , (xn, yn)} can be written:

L(θ,D(x,y)) =
1

n

n∑
i=1

[
C(M(xi;θ,θin,θout), yi)

+ `in(Rin(xi;θin), xi)

+ `out(Rout(yi;θout), yi)

]
(1)

The functionM(.; θ,θin,θout) is the mapping from the in-
put to the output space. Only this part will be used at
decision time. Rin(.;θin), Rout(.;θout) are reconstruc-
tion functions of the input and the output, such as auto-
encoders. C(.), `in(.), `out(.) are defined costs.

Through the reconstruction tasks, parameters θin and θout
embed input and output dependencies respectively. We as-
sume that the regression task can benefit from this depen-
dencies, by transfer learning, as these parameters are shared
among reconstruction and regression.

3. IODA Framework
With Input Output Deep Architecture (IODA) (Labbe et al.,
2009; Lerouge et al., 2015), we have proposed an extension
of pre-training strategy of Deep Neural Network to the out-
put layers.

The objective function (Eq. 1) is relaxed by splitting it into
three sub-costs, each one is associated to one of the follow-
ing tasks:

• Rin(.;θin), which corresponds to pre-trained input
layers,

• Rout(.;θout) , which corresponds to pre-trained out-
put layers,

• M(.; θ,θin,θout), a supervised regression.
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Input-layer pre-training is addressed as in (Hinton et al.,
2006; Bengio et al., 2007) by stacking encoding parts of
auto-encoders. For output-layer pre-training, layers are
pre-trained backward, and it is the decoding parts of auto-
encoders that are kept to initialize the weights of the layers.

The full procedure is depicted in Alg. 1. We assume the
existence of these two functions:

• X ′ ←MLPFORWARD([W1, ..,WK ],X) that propa-
gates X through layers [W1, ..,WK ],

• [W′
1, ..,W

′
K ] ←MLPTRAIN([W1, ..,WK ],X ,Y )

that trains layers [W1, ..,WK ] using back-
propagation algorithm according to a labeled
dataset (X ,Y ).

Algorithm 1 Simplified IODA training algorithm
Require: X , a training feature set of size Nbexamples ×Nbfeatures
Require: Y , a corresponding training label set of size

Nbexamples ×Nblabels
Require: Ninput, the number of input layers to be pre-trained
Require: Noutput, the number of output layers to be pre-trained
Require: N , the number of layers in the IODA,

Ninput +Noutput < N
Ensure: [W1,W2, . . . ,WN ], the parameters for all the layers

Randomly initialize [W1,W2, . . . ,WN ]

Input pre-training

R← X
for i← 1..Ninput do
{Training an AE on R and keeps its encoding parameters}
[Wi,Wdummy]← MLPTrain([Wi,W

ᵀ
i ], R,R)

Drop Wdummy
R← MLPForward[Wi], R

end for

Output pre-training

R← Y
for i← N..N −Noutput + 1 step − 1 do
{Training an AE on R and keeps its decoding parameters}
[U,Wi]← MLPTrain([Wᵀ

i ,Wi], R,R)
R← MLPForward([U], R)
Drop U

end for

Final supervised learning

[W1,W2, . . . ,WN ]
← MLPTrain([W1,W2, . . . ,WN ], X, Y )

4. Application to Facial Landmark Detection
Facial landmark detection is an example of structured out-
put problem which aims at predicting a geometric shape in-
duced by an input face image. It plays an important role in

face recognition and analysis. Therefore, it has been stud-
ied extensively in the recent years. However, this task re-
mains a challenging problem due to the complex variations
in the face appearance caused by the high variation in the
poses, expressions, illuminations and by partial occlusions.

Facial landmarks are a set of key points on human face im-
ages. These points are defined by their real coordinates
(x,y) on the image as shown in Fig. 1. The number of land-
marks is dataset or application dependent. As the positions
of the points in the face shape are dependent (spatial de-
pendencies), facial landmark detection task naturally falls
into the structured output regression problem.

While most approaches consist in defining the face shape
constraints explicitly (Cootes et al., 1995; Saragih et al.,
2011; Zhu & Ramanan, 2012; Yu et al., 2013; Zhou et al.,
2013), we propose to learn the structure of the face shape
by discovering the hidden dependencies between the land-
marks. For that purpose, we apply our IODA approach on
this task (Belharbi et al., 2015) where we compare a non
pre-trained, input pre-trained and input/output pre-trained
(IODA) deep neural network on two challenging datasets:
LFPW and HELEN.

Figure 1. Definition of 68 facial landmarks from LFPW (Bel-
humeur et al., 2011) training set.

Experiments results are sum-up in Fig. 2. We use a deep
neural network with three hidden layers the size of which
has been set to 1024, 512, 64 through a validation proce-
dure on the LFPW validation set. The input representation
size is: 50× 50 = 2500, and the output representation size
is: 68 × 2 = 136. The notation DNN 0-0-0 stands for no
pre-training at all; DNN 2-0-0 stands for 2 pre-trained input
layers and DNN 2-1-1 stands for 2 pre-trained input layers
and 1 pre-trained output layer (as exposed in IODA). To be
fair, for all the pre-training strategies the initial weights are
the same.

The CDFNRMSE represents the percentage of images
with error less or equal than the specified NRMSE value.
For example a CDF0.1 = 0.4 over a test set means that
40% of the test set images have an error less or equal
than 0.1. A CDF curve can be plotted according to these
CDFNRMSE values by varying the value of NRMSE.

Here, the IODA strategy, i.e. with input and output pre-
training, achieves the best results.
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(a) LFPW
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(b) HELEN

Figure 2. CDF curves of best multiple configurations on: (a)
LFPW, (b) HELEN.
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