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1LITIS EA 4108, INSA de Rouen, Saint Étienne du Rouvray 76800, France
2LITIS EA 4108, UFR des Sciences, Université de Rouen, France.
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Abstract

Structured output problems are characterized by struc-
tural dependencies between the outputs (e.g. the classes
distribution in image labeling problem, the words posi-
tions in sequence tagging in natural language process-
ing). Traditionally, graphical models such as HMM and
CRF are used to capture the interdependencies of the
outputs. In this article, we propose a unified framework
to deal with this problem where we combine learning the
hidden interdependencies of the inputs and the outputs
in the same optimization. In our framework, we extend
the input pre-training layer technique for deep neural
networks to pre-train the output layers aiming at learn-
ing the outputs structure. We propose a neural based
model, called Input/Output Deep Architecture (IODA)
to solve the optimization. Facial landmark detection is
a real-world application where the output key points
of the face shape have an obvious geometric structure
dependencies. We perform an evaluation of IODA on
this task over two challenging datasets: LFPW and HE-
LEN. We demonstrate that IODA outperforms a deep
network with the traditional pre-training technique.

Keywords: structured output data, deep learning,
stacked auto-encoders, facial landmark detection.

1 Introduction

In machine learning field, the main task consists in build-
ing systems able to generalize from previously seen data.
Most of machine learning applications aim at predict-
ing a single value: a label for classification or a scalar
value for regression. For these applications, existing
algorithms learn the mapping function from the input
to the output space by focusing on the dependencies in
the input data.

∗surname.lastname@litislab.eu

Many recent applications address challenging prob-
lems where the output is in high dimension (discrete
or continuous values) and where dependencies lie be-
tween these outputs. These dependencies constitute a
structure (sequences, strings, trees, graphs . . . ) which
should be either discovered if unknown, or integrated
in the learning algorithm.

The range of applications that deal with structured
output data is large. Statistical Natural Language
Processing (NLP) is an application where the out-
put has a specified structure, such as in (i) machine
translation[Och03] where the output is a sentence, (ii)
sentence parsing[ST95] where the output is a parse tree,
or (iii) part of speech tagging [Sch94] where the output
is a sequence of tags. Bioinformatics also manipulates
structured output data, such as in secondary structure
prediction of proteins[Jon99] where the output is a se-
quence modeled by a bipartite graph, or in enzyme
function prediction[SY09] where the output is a path
in a tree. In speech processing we find speech recogni-
tion (speech-to-text) [Rab89] where the prediction is a
sentence, and text-to-speech synthesis [ZTB09] where
the output is an audio signal.

Many approaches have been proposed in the liter-
ature to solve structured output problems. We can
divide these approaches into three categories: kernel
based methods, discriminative methods and graphical
methods. The two first categories aim at discovering the
hidden output structure, whereas the latter integrates
an priori knowledge about the structure.

Kernel based approaches have been used in struc-
tured data output problems where kernel functions are
used to learn the dependencies in inputs x and outputs
y. By doing this, the unconditional distributions of
the inputs p(x) and the outputs p(y) are estimated.
Then, the conditional probability of the target p(y|x)
is learned in the new spaces induced by the kernel func-
tions. [WCV+02] uses this scheme under the name
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Kernel Dependency Estimation (KDE) where two ker-
nel functions are used for x and y separately. Then, a
multivariate regression is applied from the new input
space into the new output space. Additional constraint
is added which is the reconstruction output to get back
to the original space of y.

Discriminative approaches are based on margin max-
imization property using an appropriate loss function
over the structured output data to solve input-output
task problems as a regression. This is an extension of
the large-margin classification scheme to the regression
case using the joint kernel functions. Support Vector
Machine (SVM) and its variants for structured output,
such as Structure output SVM (SSVM) is the main
technique used in this approach. [BL08] uses SSVM for
object localization as a regression task.

For both kernel based and discriminative approaches,
the conditional probability p(y|x) is learned in the new
spaces. Thus, an inverse function is needed to return
to the output original space. This problem generally
called the pre-image problem is known to be difficult.

Graphical models have shown a large success in mod-
eling structured output due to its capability to cap-
ture dependencies among relevant random variables.
Hidden Markov models (HMM) is a model based on
this approach where the interdependencies between the
output are learned. In the HMM framework, the out-
put random variables are supposed to be independent
which is not the case in many real-world applications,
where strong relations are present. Conditional Ran-
dom Fields (CRF) have been proposed to overcome this
issue, thanks to its capability to learn large dependen-
cies of the observed output data. These two models
are widely used to model structured output data rep-
resented as a 1-D sequence[Rab89, BSW99, LMP01].
Thus, many approaches have been proposed to deal
with 2-D structured output data as an extension of
HMM and CRF. [NPH06] proposes a Markov Random
Field (MRF) for document image segmentation. [SQ04]
provides an adaptation of CRF to 2-D signals with hand
drawn diagrams interpretation. Another extension of
CRF to 3-D signal is presented in [TWMM07] for 3-D
medical image segmentation. Mainly, HMM and CRF
models are used with discrete output data. Due to
the inference computational cost, graphical models are
limited to low dimensional structured output problems.
Furthermore, few works address the regression problem
using graphical models [NC12, Fri93].

In this paper we propose a new generic unified for-
mulation for regression with structured output data in
high dimension. Through this formulation, we explicitly
incorporate the inputs dependencies, the outputs depen-

dencies and the final regression task. This formulation
is solved using the Input Output Deep Architecture
(IODA) [LHC+15]. IODA is DNN trained using both
input and output pre-training, making it capable of
learning the dependencies of the inputs and the out-
puts. It has been applied with success for image labeling
where the outputs represent a 2D structured data in
high dimension. In this paper, the proposed formulation
is instantiated on a real-world multivariate regression
problem, namely facial landmark detection.

The rest of the paper is organized as follows. Section
2 describes the proposed formulation and its solving
using IODA. Section 3 presents our experiments on two
facial landmark detection datasets.

Figure 1: Definition of 68 facial landmarks from LFPW
[BJKK11] training set.

2 New Statement for Structured
Output problems

When dealing with structured output data in high di-
mension in machine learning, we add an additional
constraint on the model related to the structure of
the outputs, in the opposite of the traditional case
where the output is a single value. The previous
cited works in this domain such as kernel based meth-
ods and graphical methods have shown that when
dealing with structured output data in a learning
task, it is important to learn the outputs structure
[WCV+02, BL08, EYGB02, Rab89, BSW99, LMP01,
NPH06, SQ04, TWMM07, NC12, Fri93], beside learn-
ing the inputs structure. Learning the outputs structure
allows discovering the hidden dependencies between the
outputs dimensions. By doing this, we reduce the com-
plexity of the output space which helps to alleviate the
final learning task.

2.1 Proposed Formulation

Starting from these results, we propose a generic
framework where we incorporate learning the inputs-
inputs, the outputs-outputs dependencies and the fi-
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nal task inputs-outputs in the same optimization func-
tion. Learning both the outputs and the inputs de-
pendencies in unsupervised way is explicitly formu-
lated. In our framework, we formulate the cost func-
tion of learning the parameters θ of a model over
a labeled dataset D = {(x1, y1), . . . , (xn, yn)}, as
in the equation Eq.1. We call M(x) the mapping
function from the input space to the output space.

L(θ,D(x,y)) =
1

n

∑n
i=1

[
C(M(xi;θ,θin,θout), yi)

+ `in(Rin(xi;θin), xi)

+ `out(Rout(yi;θout), yi)

]
(1)

The cost function is split into three parts .
`in(Rin(x;θin),x), which is the cost function `in(., .)
applied on the reconstruction of the input data
Rin(x;θout) where we learn the inputs dependen-
cies. The second part consists of `out(Rout(y;θout),y)
which is the cost function `out(., .) applied on the re-
construction of the output data Rout(y;θout) where
we learn the outputs dependencies. The first part,
C(M(x;θ,θin,θout),y) is the cost of the final supervised
learning task, which is the regression in our case. Note
that the task parameters θin and θout are shared with
the previous reconstruction tasks. We learn the param-
eters θ by minimizing the cost L(θ,D(x,y)).

IODA is a neural based model that has been proposed
in [LHC+15] in the purpose of solving image labeling
problem which is a structured output data problem. In
IODA, a pre-training of the inputs is firstly performed
using a stacked auto-encoders. This allows to build a
hierarchical features representation of the input data
where the interdependencies of the data are learned at
each stage. Next, using the same trick, a pre-training is
applied on the outputs in order to learn a hierarchical
representation of the output data that allows to discover
the hidden structural topology of the outputs. After
pre-training the input and the output, a supervised
finetune is performed.

In the next paragraphs, we present briefly the frame-
work IODA and how we can use it to solve Eq.1.

2.2 IODA for Structured Output Data

IODA[LHC+15] was designed to address two problems.
The first problem is related to training deep network ar-
chitectures to deal with the vanishing gradient problem
using the pre-training trick [HOT06, BLPL07, VLL+10,
BCV13, RPCL07]. The pre-training technique allows
to initialize the network layers in a better way. The

second problem is related to the structured output data
in high dimensional space. This is done by pre-training
the output layers in a backward fashion starting from
the original outputs. Pre-training the output layers
allows IODA to learn the output structure and discover
the hidden dependencies of the outputs. It also allows
to incorporate the structure of the output data into
the network. The final learning is applied on the whole
network in a supervised fashion. We define in the next
paragraphs the tools that we will use through out the
paper.

An auto-encoder (AE) is a 2-layers MLP. The purpose
of the AE is to reconstruct an input signal x in the
output x̂ [BK87, BLPL07].

Stacked Auto-encoders for Building DNN and
IODA:
A pre-trained DNN is build using a stacked input AEs.
In the case of IODA, a stack of input AEs is linked to a
stack of output layers. Optimizing Eq.1 using IODA is
done step by step. Firstly, IODA minimizes the recon-
struction of the input data, then the reconstruction of
the output data and finally, the supervised cost function.
The IODA training involves the following steps:

1. Unsupervised pre-training of the layers close to the
input layer to learn the inputs dependencies

2. Unsupervised pre-training of the layers close the
output layer to learn the outputs dependencies

3. Final supervised back-propagation for the whole
model to learn the mapping function from the
inputs-outputs

IODA allows the creation of a third part between the
input and the output layers which consists of a simple
MLP. We extend our framework Eq.1, by adding a
new term describing the the cost of learning a mapping
function from the learned input space to the learned
output space. Our extended framework is formulated
in Eq.2. We call Mlink(x;θlink) the mapping function
from the input space to the output space of the link.
We call rin(x) the last representation in the input stack
AEs, rout(y) the last representation in the output stack
AEs.

L(θ,D(x,y)) =
1

n

∑n
i=1

[
C(M(xi;θ,θin,θlink,θout), yi)

+ `in(Rin0(xi;θin), xi)

+ `out0(Rout0(yi;θout), yi)

+ `link(Mlink(rin(xi);θlink), rout(yi))

]
(2)

Let us consider a network with 3 lay-
ers with its mapping function Eq.3:
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M(x;θ) = g(W3 × h(W2 × h(W1× x + b1) + b2)

+ b3) (3)

Where θ = {W1,b1,W2,b2,W3,b3}, g(.) and h(.)
are activation functions. We consider the first layer as
the input layer, the second layer as the link layer and
the third layer as the output layer.

Input pre-training
Let’s replace the reconstruction func-
tion Rin by an AE and optimize it:

Lin = min
θin

∑
i

`in(Rin(xi;θin), xi)

= min
Win,bin,b′

in

∑
i

`in(g(Win
ᵀ × h(Win × xi

+bin) + b′in), xi) .

Parameters Win and bin are kept to initialize W1 and
b1 respectively.

Output pre-training
Let’s replace the reconstruction func-
tion Rout by an AE and optimize it:

Lout = min
θout

∑
i

`out(Rout(yi;θout), yi)

= min
Wout,bout,b′

out

∑
i

`out(g(Wout
ᵀ × h(Wout × yi

+bout) + b′out), yi) .

Parameters Wout
ᵀ and b′out are kept to initialize W3

and b3 respectively.

Link pre-training[optional]
Learn {Wlink,blink} by the following optimization
problem:

Llink = min
Wlink,blink

∑
i

`link(h(Wout × yi + bout)

,h(Wlink × h(Win × xi + bin) + blink)) .
Note that {Win,bin,Wout,bout} are fixed. Parame-
ters Wlink and blink are kept to initialize W2 and b2

respectively.

Supervised finetuning
A standard backprobagation is undertaken on the DNN.
More details on training IODA can be found in
[LHC+15].

3 Facial Landmark Detection

In this paper, our formulation and its instantiation
with IODA is evaluated on a facial landmark detec-
tion problem. We first describe the application and
briefly present the related works. The datasets and the

experimental protocol are then detailed and our im-
plementation is described before presenting the results.
All the experiments are done using a custom version of
the library Crino [LHC+15].

3.1 Facial Landmark Detection

Facial landmark detection is an example of structured
output problem which aims at predicting a geometric
shape induced by an input face image. It plays an im-
portant role in face recognition and analysis. Therefore,
it has been studied extensively in the recent years. How-
ever, this task remains a challenging problem due to the
complex variations in the face appearance caused by the
high variation in the poses, expressions, illuminations
and by partial occlusions.

Facial landmarks are a set of key points on human
face images. These points are defined by their real
coordinates (x,y) on the image as shown in Fig. 1. The
number of landmarks is dataset or application depen-
dent. As the positions of the points in the face shape
are dependent (spatial dependencies), facial landmark
detection task falls naturally into the structured output
regression problem.

Successful approaches used in facial landmark detec-
tion integrate in the learning process the face shape
constraints for the prediction which is the key suc-
cess of these techniques. Point Distribution Model
(PDM) is widely used as a statistical model to cap-
ture the geometric distribution of the landmarks
[CTCG95, SLC11, ZBL13]. [ZSCC13] uses SSVM to
constrain the face shape based on a tree shape. Pic-
torial image [FH05] has been used to model the facial
landmarks relations as a graph. Many approaches use
the pictorial image method as a face shape constraint
[ZR12, YHZ+13]. 3D face model has been also used
in a graph matching problem [YHZ+13, TYRW14]. In
[SWT13], the face shape constraints are learned implic-
itly by the carefully designed convolutional networks.
[DGFG12] uses Markov Random Field to model the
relation between the key points.

Whereas most approaches consist in defining the face
shape constraints explicitly, we propose to learn the
structure of the face shape by discovering the hidden
dependencies between the landmarks. For that, our
formulation is implemented using IODA.

3.2 Datasets

We have carried out our evaluation over two public
datasets: LFPW[BJKK11] and HELEN[LBL+12].
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LFPW dataset: It consists of 1132 training im-
ages and 300 test images taken under unconstrained
conditions (in the wild) with large variations in the
pose, expression, illumination and with partial occlu-
sions (Fig.1). This makes the facial point detection
a challenging task on this dataset. From the initial
dataset described in LFPW[BJKK11], we use only the
811 training images and the 224 test images provided
by the ibug website [fac]. The ground truth annotation
of 68 facial points is provided by [STZP13]. We divide
the available training samples into two sets: validation
set (135 samples) and training set (676 samples).

HELEN dataset: It is similar to LFPW dataset,
where the images have been taken under unconstrained
conditions with high resolution and collected from Fliker
using text queries. It contains 2000 images for training,
and 330 images for test. The images and the face
bounding boxes are provided by [fac]. The ground
truth annotations are provided by [STZP13]. Examples
of dataset are shown in Fig.2.

Figure 2: Samples from HELEN [LBL+12] dataset.

For both datasets, due to the variation of the input
images size, faces are cropped into the same size (50×50)
then normalized in [0,1]. The face shapes are normalized
into [-1,1].

3.3 IODA Implementation

We use a deep neural network with three hidden layers
the size of which has been set to 1024, 512, 64 through a
validation procedure on the LFPW validation set. The
input representation size is: 50 × 50 = 2500, and the
output representation size is: 68× 2 = 136.

We use the same architecture through all the ex-
periments with different configurations. To distinguish
between the multiple configurations we set this notation:
DNN in-link-out where:

• in: The number of pre-trained input layers.

• link: Indicates if the link has been trained (1) or
not (0). The link may contain more than one layer.

• out: The number of pre-trained output layers. The
configuration is called IODA if out > 0.

We use the same initial parameters in all the
configurations. All the AEs are trained using a
standard back-propagation algorithm. The classical
momentum[SMDH13], with a constant momentum co-
efficient of 0.5 is used in training the output AEs.

To control the overfitting in the auto-encoders, we
use in the training of each AE the l1 regularization over
the weights of the coding and the decoding layers with
weight decay values of: 10−5, 10−4, 10−5 for the input
AEs, the link and the output AEs respectively.

Two termination criteria are used for all pre-training
and training procedures: the validation error and a
maximum number of epochs. The maximum number of
epochs is 300 for the supervised training. Less epochs
are used in the pre-training (less than 40), except the
first input layer where it needs 200 epochs.

The hyper-parameters (learning rate, batch size, mo-
mentum coefficient, weight decay) have been optimized
on the LFPW validation set ( 1

6 of available training
set, selected randomly). We use the same optimized
hyper-parameters for HELEN dataset.

A sigmoid function is used everywhere except for the
decoding layer of the first output AE which is a tangent
hyperbolic function to be adequate to the range of the
output [-1, 1]. We use the mean squared loss function
in every pre-training and training procedure.

3.4 Metrics

The Normalized Root Mean Square Error
(NRMSE)[CC06] (Eq.4) is the Euclidean distance
between the predicted shape and the ground truth
normalized by the product of the number of points in
the shape and the inter-ocular distance D (distance
between the eyes pupils of the ground truth) :

NRMSE(sp, sg) =
1

n ∗D

n∑
i=1

||spi − sgi||2 (4)

where sp and sg are the predicted and the ground truth
shapes, respectively. D is the inter-ocular distance of
the shape sg.

Using the NMRSE, we can calculate the Cumu-
lative Distribution Function for a specific NRMSE
(CDFNRMSE) value (Eq.5) overall the database.

CDFx =
CARD(NRMSE ≤ x)

N
(5)

where CARD(.) is the cardinal of a set. N is the total
number of images.

The CDFNRMSE represents the percentage of images
with error less or equal than the specified NRMSE value.
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For example a CDF0.1 = 0.4 over a test set means that
40% of the test set images have an error less or equal
than 0.1. A CDF curve can be plotted according to these
CDFNRMSE values by varying the value of NRMSE.

These are the usual evaluation criteria used in facial
landmark detection. To have more numerical precision
in the comparison in our experiments, we calculate the
Area Under the CDF Curve (AUC), using only the
NRMSE range [0,0.5] with a step of 10−3.

3.5 Results

Beside the multiple configurations based on the DNN,
we consider also the case where we predict the mean
shape for every test image estimated only from the
training set.

The total training time (unsupervised and supervised)
of the DNN takes less than 20 mins for LFPW and
less than 30 mins for HELEN on a GPU. The results
of the studied configurations are reported in Tab. 1.
This table presents the performance of the different
configurations (mean shape, input pre-trained DNN,
IODA) on LFPW and HELEN datasets. We report the
area under the CDF curve (AUC), and the CDF value
at NRMSE=0.1.

From Tab.1, one can see that pre-training the input
improves the performance of the DNN compared to non
pre-trained DNN. This confirms the interest of the input
pre-training in deep architectures. On the other hand,
pre-training many input layers does not improve too
much the performance. It may decrease it, as in DNN
2-0-0 for LFPW. This may be explained by the fact that
pre-training one input layer is enough to learn the rele-
vant features for the final task. Pre-training the second
input layer did not provide a good features based on the
previous extracted features in the first layer. This may
be caused by the pre-training that harms the param-
eters (i.e. the weights and the biases) of second layer
and make it difficult for the final supervised training to
correct this damage because of the vanishing gradient.
This may also be seen as an overfitting during the pre-
training where the auto-encoder achieve a low error on
the training and the validation set but it is not in favor
of the final supervised training. We recall that when
pre-training a stack of auto-encoders, the supervised
criterion is not used. Thus, the learned intermediate
features are independent from the supervised task. In
the final supervised training, the network corrects the
learned intermediate features in the layers, in a way
that they are straightforward useful for the task. This is
one of the main problems in the pre-training technique.

One can also see that in the proposed method where

an input and output pre-training is performed, the DNN
achieves the best results. This is due to the capability of
IODA to learn the structural dependencies between the
key points of the face shape in the output space. This
alleviates the difficulty of learning the mapping function
from the input to the output space. Pre-training the
output also faces the same difficulty as the input, which
is finding the adequate number of layers to pre-train. In
LFPW, pre-training 3 output layers provides the best
results whereas 1 layer is enough in HELEN.

Pre-training the link also helps improving the results
as in DNN 1-0-1 and DNN 1-1-1 on LFPW where we
obtained an AUC of 80.66% and 81.50%, respectively.
Another experiment exhibits the ability of IODA setups

LFPW HELEN
AUC CDF0.1 AUC CDF0.1

Mean shape 66.15% 18.30% 63.30% 16.97%

DNN 0-0-0 77.60% 50.89% 80.91% 69.69%

DNN 1-0-0 79.25% 62.94% 82.13% 76.36%
DNN 2-0-0 79.10% 58.48% 82.39% 75.75%
DNN 3-0-0 79.51% 65.62% 82.25% 77.27%

DNN 1-0-1 80.66% 68.30% 83.95% 83.03%
DNN 1-1-1 81.50% 72.32% 83.51% 80.90%
DNN 1-0-2 81.00% 71.42% 83.91% 82.42%
DNN 1-1-2 81.06% 70.98% 83.81% 83.03%
DNN 1-0-3 81.91% 74.55% 83.72% 80.30%
DNN 0-0-4 81.60% 70.98% 83.51% 81.21%
DNN 2-0-1 81.32% 72.76% 83.61% 80.00%
DNN 2-1-1 81.47% 70.08% 84.11% 83.33%
DNN 2-0-2 81.35% 71.87% 83.88% 82.12%
DNN 3-0-1 81.62% 72.76% 83.38% 78.48%

Table 1: Performance of mean shape, non pre-trained
DNN, multiple configurations of input pre-trained DNN
and IODA on LFPW and HELEN.

to learn the output dependencies. It consists in feeding
the trained network a blank image (black) and see
what it outputs. Fig.3 shows the shape output for each
dataset and each best configuration.

From Fig.3(b), we see that the non pre-trained DNN
learned a shape close the face shape. Pre-training the
input, Fig. 3(c), improves a little the shape, but still
struggle with the details. IODA, Fig.3(d), outputs a
better face shape since the structure of the face (i.e. the
relations between the landmarks) is better modeled.

In the case of HELEN, all the configurations suc-
ceeded to learn a face shape with a little difficulties in
the non pre-trained DNN. This is due to the fact that
a large part of HELEN dataset images are frontal, in
the opposite of LFPW that presents a high variations
in the face pose. Moreover, HELEN dataset contains
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more samples than LFPW, which allows the network
to learn better the face shape.

(a) Mean shape (b) DNN 0-0-0 (c) DNN 3-0-0 (d) IODA 1-0-3

(e) Mean shape (f) DNN 0-0-0 (g) DNN 2-0-0 (h) IODA 2-1-1

Figure 3: The shape response of the network for a black
image for the three best configurations and the mean
shape in LFPW (up) and HELEN (bottom) dataset.

We plot the CDF curves of the three best configu-
rations in figure Fig. 4. Our results on LFPW using
DNN 3-0-0 are in the same range as in [ZSKC14] using
only the first global DNN, where they use a network
with three hidden layers: 1600,900,400 with the same
input and output dimensions as ours:(2500,136), respec-
tively. Our CDF0.1 = 65.62% is close to the CDF0.1

obtained in [ZSKC14]. Let us emphasize that we use
only one dataset for training whereas in [ZSKC14], the
system is trained using multiple datasets. Because of
the variability in the datasets distributions, the mean
shape obtained is far from the test set, thus, we obtain
better results than [ZSKC14] on LFPW using the mean
shape. Figures 5 and 6 show some examples of the
prediction for the best DNN configurations on LFPW
and HELEN respectively. We plot a segment between
every predicted key point and ground truth. The longer
the segment is, the higher the error is.

4 Conclusions

In this article we proposed a generic framework for
structured output problems where we incorporate the
structure of the output data into the model by learning
the structural topology of the output space. To opti-
mize our framework we use IODA, a neural based model.
Based on the pre-training trick, IODA deals with two
problems. The first is to find a good initialization to the
deep network. The second is learning a better represen-
tation of the input space, and incorporating the struc-
ture of the output data into the network by learning the

hidden relations in the output space. This is more ap-
propriate when dealing with problems with structured
output in a high dimensional space. We compared our
method with the traditional approach to pre-train DNN,
where only input pre-training is performed. To validate
our approach, we tested IODA on the facial landmark
detection problem on two challenging datasets: LFPW
and HELEN. Our model outperformed the classical
input pre-training. This demonstrated the interest of
pre-training the output when there is a structured de-
pendencies in the output space. Our work also demon-
strated the capability of a DNN to perform a regression
of a large vector for facial landmark detection based
simply on the raw image. Cascading many IODAs’
models may give better results than [ZSKC14].

By the application of the pre-training trick, it showed
one of its problems which is the non-cooperation be-
tween the unsupervised and the supervised training.
As a future work, we plan to build a framework where
the finale supervised training guides the unsupervised
pre-training in a direction that helps explicitly the final
supervised task.
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Figure 5: Prediction error on LFPW, each row: DNN
0-0-0, DNN 3-0-0, IODA 1-0-3.
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Figure 6: Prediction error on HELEN, each row: DNN
0-0-0, DNN 2-0-0, IODA 2-1-1.
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