

Alliance de recherche numérique du Canada

Context

Why microscopy image super-resolution via machine learning?	
 Fast low resolution imaging Reduce phototoxicity: cell damage/death due to long exposure to light to acquire high resolution images Reduce photobleaching 	L L L L L L L L L L L L L L L L L L L
 Allow for the observation of instantaneous inter-cellular events with less damage to the cells Live imaging videos with low quality under reduced light exposure 	e de series de series Esta de series de serie
Existing microscopy super-resolution datasets are:	

🕼 Very few

🕼 Private

May focus on high-end imaging techniques, like SIM (Structured Illumination Microscopy), BioSR dataset.

This limits research in machine learning-based super-resolution field.

Why confocal microscopy? Widely accessible

SR-CACO-2: Capture

Figure 1. Methodology for capturing the SR-CACO-2 dataset.

Preparation for SISR task: patching

Tile, HR, CELL2

Figure 2. Pre-processing of tiles to patches.

SR-CACO-2: A Dataset for Confocal Fluorescence **Microscopy Image Super-Resolution**

Soufiane Belharbi^{1*} & Mara KM Whitford^{2,3} & Phuong Hoang² & Shakeeb Murtaza¹ & Luke McCaffrey^{2,3,4} & Eric Granger¹

¹LIVIA, ILLS, Dept. of Systems Engineering, ETS Montreal, Canada ²Goodman Cancer Institute, McGill University, Montreal, Canada ³Dept. of Biochemistry, McGill University, Montreal, Canada ⁴Gerald Bronfman Dept. of Oncology, McGill University, Montreal, Canada

SR-CACO-2: Diversity

SR-CACO-2 contains the human epithelial cell line Caco-2 (ATCC) HTB-37)

16 SISR methods. Super-resolution task

- Real pairs: LR-HR
- [•] 4 scales: HR, LR (/2, /4, /8)
- [•] 3 protein markers: Survivin (CELLO), E-cadherin or GFP-tubulin (CELL1),
- mCherry-Histone H2B (CELL2)
- 16,800 multi-cellular objects
- Per-scale: 22,00 unique images (22 tiles), +9k patches (512×512)
- License: Freely accessible under CC BY-NC-SA 4.0

Figure 3. Illustration of SR-CACO-2 patch content for cells CELLO, CELL1, and CELL2, and for the HR patch and its corresponding three LR patches (/2, /4, /8).

	Tiles				Patches			
Data subsets	Train	Validation	Test	Total	Train	Validation	Test	Total
Number	15	3	4	22	7,349	1,117	1,471	9,937
Image size:								
HR		$\sim 9,318 \times 9$	9,318	3		512×52	12	
LR /2		$\sim 4,658 \times 4$	4,658	3		256×25	56	
LR /4		$\sim 2,328 \times 2$	2,328	3		128×12	28	
LR /8		$\sim 1,164 \times 1$	1,164	ł		64×64	4	
File size:								
HR		260.5 M	1B			262.4 K	(B	
LR /2		65.1 M	В			65.8 K	В	
LR /4		16.3 M	В			16.6 K	В	
LR /8		4.1 ME	3			4.4 KE	3	

Table 1. Split of **SR-CACO-2** into the train, validation and test subsets, along with relevant statistics. Numbers are defined per scale (X2, X4, X8, and HR), and per cell type (CELLO, CELL1, and CELL2).

Figure 4. Object-based analysis of cellular structures captured of all the 22,00 high-resolution images $(22 \times 10 \times 10)$.

Figure 5. Illustrative super-resolution visual results for X2, CELL2 across all SISR models

Table 2. The performance of SISR methods on the SR-CACO-2 test set of ROI only, *i.e.*, cells. See paper for the full 16 methods.

Benchmarking: Results

		1											
		$PSNR\uparrow$			$\texttt{NRMSE} \downarrow$				$\texttt{SSIM} \uparrow$				
SISR Methods	Scale	CELLO	CELL1	CELL2	Mean	CELLO	CELL1	CELL2	Mean	CELLO	CELL1	CELL2	Mean
	X2	35.02	32.15	30.38	32.52	0.1085	0.0601	0.0724	0.0803	0.7618	0.7658	0.6891	0.7389
Bicubic	X4	35.46	32.03	31.10	32.86	0.0985	0.0586	0.0660	0.0744	0.8206	0.8002	0.7673	0.7960
	X8	31.88	27.50	26.10	28.49	0.1655	0.1139	0.1349	0.1381	0.6683	0.6266	0.6511	0.6487
Pre-upsampling SR													
	X2	37.54	34.27	33.42	35.08	0.0710	0.0450	0.0500	0.0553	0.8517	0.8524	0.8210	0.8417
SRCNN (eccv,2014)	X4	36.14	32.73	32.25	33.71	0.0817	0.0528	0.0572	0.0639	0.8522	0.8216	0.8079	0.8272
	X8	33.05	28.04	26.49	29.19	0.1265	0.0967	0.1220	0.1151	0.7711	0.7085	0.7092	0.7296
Post-upsampling SR													
	X2	37.70	34.11	33.51	35.11	0.0759	0.0461	0.0496	0.0572	0.8744	0.8539	0.8313	0.8532
Omni-SR (cvpr,2023)	X4	36.44	32.59	32.34	33.79	0.0849	0.0536	0.0563	0.0649	0.8592	0.8203	0.8111	0.8302
	X8	30.75	27.16	25.30	27.74	0.1713	0.1098	0.1352	0.1387	0.6715	0.6419	0.6591	0.6575
Iterative up-and-down sampling SR													
	X2	36.13	33.15	31.61	33.63	0.0955	0.0531	0.0625	0.0704	0.8078	0.8091	0.7470	0.7880
SRFBN (cvpr,2019)	X4	36.08	32.52	31.79	33.46	0.0911	0.0545	0.0605	0.0687	0.8405	0.8147	0.7889	0.8147
	X8	32.27	27.78	26.47	28.84	0.1560	0.1091	0.1278	0.1310	0.7022	0.6549	0.6904	0.6825
Progressive upsampling SR													
	X2	33.88	32.36	29.34	31.86	0.1130	0.0535	0.0791	0.0819	0.7652	0.8164	0.7695	0.7837
MS-LapSRN (tpami,2019)	X4	30.80	30.99	31.08	30.96	0.1192	0.0615	0.0626	0.0811	0.7885	0.7837	0.7806	0.7843
	X8	31.83	27.14	25.06	28.01	0.1404	0.0982	0.1323	0.1236	0.7478	0.6933	0.6640	0.7017

Access, code, arXiv

Figure 7. Full arXiv paper: arxiv.org/pdf/2406.09168

Downstream task: cell detection/segmentation

Figure 8. Cell segmentation example using different methods: CELL2, X2. Red arrow for undersegmented errors; Blue arrow for oversegmented error; and green arrow for boundary error. In all cases, the brightness has been enhanced just for visualization.

samples (red dots). Segmentation Error

CELL0	Oversegmenta					
	Undersegmenta					
CELL2	Oversegmenta					
	Undersegmenta					

Rosalind & Morri Goodman Cancer Institute

Benchmarking: Results

Figure 9. Analysis of cell detection performance for CELL2, X2 over 30 random test

Figure 10. Analysis of cell segmentation performance: CELLO, CELL2, X2.